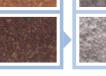
Performance Tips and Guides

STEEL SURFACE FINISHING STANDARDS

COMMERCIAL BLAST CLEANING



pon the original surface condition as well as the type of abrasive

FOR ALL YOUR BLASTING...

..AND SPRAYING NEEDS

CALL 01778 560650 OR VISIT WWW.AIRBLAST.CO.UK

AIRBLAST EUROSPRAY, AN INTRODUCTION

Airblast Eurospray is one of the leading global voices in surface preparation and finishing. We design, manufacture, install and sell blast and spray equipment and facilities to some of the world's most important organisations. With roots stretching back to 1971, we're known for driving the market with innovative, technically excellent blast and paint solutions for a wide range of industries.

WORLD-LEADING BLAST AND SPRAY EXCELLENCE

Our equipment is used in many demanding environments where product integrity is vital – so we only manufacture and sell facilities and equipment that we know are:

- Robust
- · Well-designed
- Powerful
- Able to deliver optimum performance safely and efficiently

PROFESSIONAL RESULTS

We're proud to offer complete solutions for any blast and spray application with a full range of products and services to help you complete your work to a high professional standard. If you have a bespoke query or cannot locate a specific product our brochures, please contact our sales team who will be happy to help you.

KNOWLEDGE TRANSFER

Performance is nothing without knowledge - especially with safety-critical processes like blasting. That's why we provide full operator training with industry experts as well as top-up training to keep experienced operators upto-date with the latest blast and paint technology and developments. Contact our Training Specialists on 01778 560650 to find out more.

SERVICE AND AFTERCARE

We want you to get the best from your equipment for years to come, so we offer:

- · Product and facility servicing
- Service contracts with reduced parts and labour rates
- Equipment collection
- Site visits, inspection and investigation services
- · Next day delivery on many products

EQUIPMENT HIRE

Want to try before you buy? Many of our products are available for hire including blast machines, coating systems, water injection pumps, vacuum transfer units, suction and pressure cabinets, dust arrestors, hand-held closed circuit blast machines, closed circuit blasting and extractor fans. Contact our Hire Team for more information.

Finance packages available to help spread the cost of purchase. Get in touch today.

AIRBLAST EUROSPRAY

Telephone: 01778 560650

Unit 26 King Street Industrial Estate Langtoft Peterborough PE6 9NF

sales@airblast.co.uk

NOZZLE PRESSURE/DIAMETER/SERVICE LIFE/AIR VOLUME

Orifice	60 PSI	4.2 BAR	70 PSI	4.9 BAR	80 PSI	5.6 BAR	90 PSI	6.3 BAR	100 PSI	7.0 BAR	120 PSI	8.5 BAR			
5.0mm	30.0	0.85	33	0.93	38	1.08	41	1.16	45	1.27	58	1.64	Required Air	CFM	m³/min
3/16"	171	77	196	89	216	96	238	108	264	120	375	170	Required Abrasive	ltr/hr	kg/hr*
	7	5.3	8	5.6	9	6.4	10	7.1	10	7.5	12	9	Required Power	hp	kw
6.5mm	54	1.53	61	1.73	68	1.93	74	2.1	81	2.29	105	2.97	Required Air	CFM	m³/min
4/16"	312	141	354	160	408	185	448	203	494	224	660	300	Required Abrasive	ltr/hr	kg/hr*
	12	9	14	10.1	16	11.6	17	12.4	18	13.5	22	16.2	Required Power	hp	kw
8.0mm	89	2.52	101	2.86	113	3.2	126	3.57	137	3.88	160	4.53	Required Air	CFM	m³/min
5/16"	534	242	604	274	672	305	740	335	850	385	1050	476	Required Abrasive	ltr/hr	kg/hr*
	20	15	23	19.1	26	20.2	28	21	31	22.9	37	27.5	Required Power	hp	kw
9.5mm	126	3.57	143	4.05	161	4.56	173	4.9	196	5.55	235	6.65	Required Air	CFM	m³/min
6/16"	764	346	864	392	960	425	1052	477	1152	523	1475	669	Required Abrasive	ltr/hr	kg/hr*
	28	21	32	24	36	27	39	28.9	44	33	52	39.6	Required Power	hp	kw
11.0mm	170.0	4.81	184	5.21	217	6.14	240	6.8	254	7.19	315	8.92	Required Air	CFM	m³/min
7/16"	1032	468	1176	533	1312	595	1448	657	1584	719	2050	930	Required Abrasive	ltr/hr	kg/hr*
	38	28.5	44	32.6	49	36.4	54	40.1	57	42.4	69	50.9	Required Power	hp	kw
12.5mm	224	6.34	252	7.14	280	7.93	309	8.75	338	9.57	410	11.61	Required Air	CFM	m³/min
8/16"	1336	606	1512	686	1680	762	1856	842	2024	918	2650	1202	Required Abrasive	ltr/hr	kg/hr*
	50	37.5	56	42	63	46.9	69	51.8	75	56.3	90	67.6	 Required Power 	hp	kw

Chart shows calculated consumption rates of air and abrasive for new nozzles. When selecting a compressor, add 50% to above figures to allow for normal nozzle wear and friction loss. *Based on abrasive density of 1.5kg per litre.

The effects of nozzle wear on air consumption must be considered when selecting nozzles and the compressors that support them. Contact Technical Support to find out more.

Approximate nozzle service life in hours*			
Nozzle material	Steel shot and grit	Expendable abrasives	Alu-oxide abrasives
Tungsten carbide	500–800	300–400	20–40
Silicon carbide and nitride	600–1000	400–600	50–100
Boron carbide	1500–2500	750–1500	200–1000
* Estimated values for comparison. Actual service life will vary depend	ding upon blast pressure, media size and	J particle shape.	

linimum Air Volume Table. Air volume requirements at 100PSI for a complete blast system										
Nozzle	Size of orifice	Volume of air	Plus helmet	Plus 50% (reserve)	Minimum air required					
No. 4	1/4"	81	20	50	151CFM					
	6.5mm	2.3	0.5	1.4	4.2m³/min					
No. 5	⁵ /16"	137	20	79	236CFM					
110.5	8.0mm	3.9	0.5	2.2	6.6m³/min					
No. 6	3/8"	196	20	108	324CFM					
110.0	9.5mm	5.5	0.5	3.0	9.0m³/min					
No. 7	⁷ /16"	254	20	137	411CFM					
140. 7	11mm	7.2	0.5	3.9	11.6m³/min					
No. 8	1/2"	338	20	179	537CFM					
140.0	12.5mm	9.6	0.5	5.0	161.m³/min					

NOTE: Figures may vary depending on working conditions. To maintain desired air pressure as nozzle orifice wears, air consumption increases.

NOZZLE SELECTOR TYPE GUIDE/AIR LINE SIZES

Туре	Casing	Liner	Length	1	Inlet	Th	read	Orifice size range	
			Short Medium Long	1"	1¼"	Fine	Large (50mm)	mm	inches
ATSD	Aluminium	Tungsten Carbide	•	•		•		5.0-12.5	3/86-1/2
ATSDX	Aluminium	Tungsten Carbide	•		•	•		6.5-19.0	1/4 - 3/4
ATSDX-X/50	Aluminium	Tungsten Carbide	•		•		•	6.5-19.0	1/4 - 3/4
RJL-X/50	Alu/Rubber sleeved	Tungsten Carbide	•		•		•	5.0-19.0	3/16-3/4
ATJD	Aluminium	Tungsten Carbide	•	•		•		5.0-12.5	3/16-1/2
ATJDX	Aluminium	Tungsten Carbide	•		•	•		8.0-16.0	5/16-5/8
ATJDX-X/50	Aluminium	Tungsten Carbide	•		•		•	8.0-16.0	5/16-5/8
AT	Aluminium	Tungsten Carbide	•			•		3.0-12.5	1/8-1/2
ATL	Aluminium	Tungsten Carbide	•				•	3.0-12.5	1/8-1/2
AAM-X/50	Aluminium	Tungsten Carbide	•	•			•	3.0 – 9.5	1/8-3/8
ABSN-X/50	Polyurethane	Silicon Nitride	•		•		•	5.0-12.5	3/16-1/2"
ABCL-X/50	Aluminium	Boron Carbide	•	•			•	6.5-12.5	1/4 – 1/2

Minimum Compressor Air line sizes									
Nozzle orifice size	Minimum air line ID								
1⁄4" (6.5mm)	1" (25mm)								
5/16" (8.0mm)	1¼" (32mm)								
³ / ₈ " (9.5mm)	1½" (38mm)								
⁷ / ₁₆ " (11.0mm)	2" (50mm)								
½" (12.5mm)	2" (50mm)								
	2½" (64mm)								
	3" (76mm)								

Compatibility	Guide						
No.	Nozzle orifice	Recommend m³/min	ed range CFM	Minimum blast machine capacity (ltr)	Minimum pipe ID	Blast hose ID	Minimum air hose ID
3	5.0mm	1.27–2.29	45–81	60	1"	3/4"	1"
4	6.5mm	2.29–3.88	81–137	60	1"	1"-1¼"	1¼"
5	8.0mm	3.88-5.55	137–196	100	1"	1"-1¼"	1¼"
6	9.5mm	5.55–7.19	196–254	200	1¼"	11⁄4"	1½"
7	11.0mm	7.19–9.57	254–338	200	1¼"	1"–1¼"	2"
8	12.5mm	9.57–15.52	338–548	200	1¼"	1"–1¼"	2"

Note: Best performance is obtained when sizes of nozzle, blast machine piping, blast hose and air hose are properly matched.

 $[\]cdot$ m³/min and CFM range is based on blasting at 7bar (100psi) for the life of the nozzle.

 $[\]bullet$ Blast machine capacity should allow 20 to 30 minutes of blasting.

[•] Hose ID should be three to four times the size of the nozzle orifice.

ABRASIVE BLAST PERFORMANCE GUIDE

Nozzle size (mm)	4.8	6.5	8.0	9.5	11.0	12.5
CFM @ 7bar/100psi	46	83	129	187	254	332
Sand usage/hr	330	618	1015	1440	1980	2530
FINISH: White Metal NACE #1/SA3			m² per hour			
Loose Mill Scale; Light Rust; No Surface Pitting	3.1	5.8	101	13.4	18.4	23.5
Tight Mill Scale; Overall Rust; Some Pitting	2.5	4.7	7.9	11.1	17.2	19.5
Painted Surface; Heavy Rust; Pitted Surface	1.5	2.9	4.7	6.7	9.2	11.7
Multi-Coated or Heavily Pitted; Rust Scale	1.2	2.3	3.8	5.3	7.3	9.4
FINISH: Near White NACE #2/SA2½			m² per hour			
Loose Mill Scale; Light Rust; No Surface Pitting	3.3	7.9	9.8	14.0	19.3	24.7
Tight Mill Scale; Overall Rust; Some Pitting	2.6	5.0	8.3	11.7	16.1	20.4
Painted Surface; Heavy Rust; Pitted Surface	1.6	3.1	5.0	7.2	9.7	12.3
Multi-Coated or Heavily Pitted; Rust Scale	1.3	2.4	4.0	5.6	7.7	9.8
FINISH: Commercial NACE #3/SA2			m² per hour			
Loose Mill Scale; Light Rust; No Surface Pitting	7.6	14.3	23.4	33.4	46.0	77.3
Tight Mill Scale; Overall Rust; Some Pitting	5.1	9.6	17.6	22.3	30.7	39.1
Painted Surface; Heavy Rust; Pitted Surface	3.8	7.2	11.8	16.7	22.9	29.5
Multi-Coated or Heavily Pitted; Rust Scale	2.5	4.7	7.9	11,1	15.3	19.5

Nozzle size	Orifi	ce size	Air flow (CENA)	Increase in air			
NOZZIE SIZE	Imperial	Metric (mm)	Metric (mm) Air flow (CFM)				
4	1/4	6.5	81				
5	5/16	8.0	137	96% more than No. 4			
6	3/8	9.5	196	43% more than No. 5			
7	7/16	11.0	254	29% more than No. 6			
8	1/2	12.5	338	33% more than No. 7			

CHECKING COMPRESSED AIR QUALITY

Prior to blasting and/or blowing off the work surface

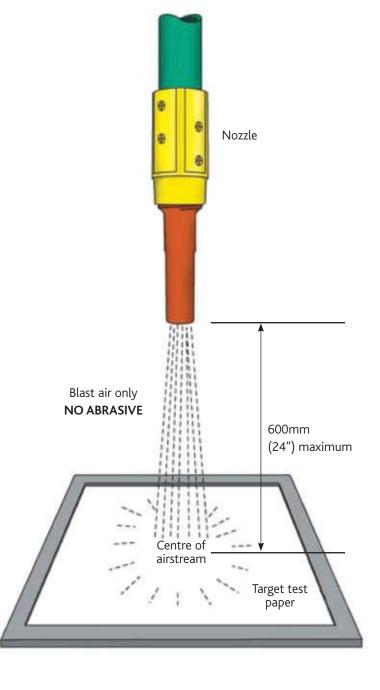
Why compressed air quality is critical:

One of the key aims of blast cleaning is to remove surface contaminants, corrosion, old paint etc. to ensure the performance of the coating system.

The compressed air must be clean, otherwise the blasting will introduce fresh contaminants as fast as the old contaminants are removed.

Contaminants to check in the compressed air

- Dirt
- Oil (mist or droplets)
- · Moisture (mist or droplets)


Each and all of these can cause coating failure.

Recommended check intervals

- · Test before commencing blasting
- · Every 4 hours when blasting continuously

Blotter paper method to check air quality

- 1 Start the compressor and set up the blast equipment
- 2 Secure the test paper apparatus
- 3 When the compressor is warmed up, start the blast equipment with NO abrasive in the airstream
- 4 Position the nozzle so the test paper is in the centre of the airstream and within 24" (600mm) of the nozzle
- 5 Sustain the test for 2 minutes continuously
- 6 After 2 minutes, stop the test and immediately check the test paper for any sign, feel, or smell of oil, moisture or other contaminants.

DISCLAIMER: The above information and procedure is for illustrative purposes only and is not intended to be an approved or standard method for testing compressed air quality. Airblast Europsray expressly disclaims liability for the use or misuse of the above information and procedure.

PAINT APPLICATION TABLES

Corrected volume solids (to the nearest 1%) after adding thinner to various initial volume solids coatings

Formula

Corrected volume solids (CVS)

CVS = Original volume solids x 100(100 + % thinner added)

Amount of thinner added per 20 litres

	%	2.5%	3.125%	5%	6.25%	7.5%	10%	12.5%	18.75%	25%	27.5%
_	ml	500	625	1000	1250	1500					
_	litres			1	1.25	1.5	2	2.5	3.75	5	7.5
_	100%	98	97	96–95	94	93	91	89	84	80	73
	95%	93	93	91–90	90	89–88	87	85	81	77	70
	90%	88	87	86	84	84	82	80	76	72	66
ng L	85%	83	82	81	80	79	78	76	72	68	62
thinning	80%	78	78	77–76	75	74	73	71	68	64	58
(a)	75%	73	73	72	71	70	69–68	67	63	60	55
befor	70%	68	68	67	66	65	64	62	59	56	51
ds b	65%	64	63	62	61	60	60–59	58	55	52	47
solids	60%	59	58	57	57	56–55	55	53	51	48	44
a B	55%	54	53	53–52	52	51	50	49	46	44	40
volume	50%	49	48	48	47	46	46	45	42	40	36
Initial \	45%	44	44	43	42	42	41	40	38	36	33
ᆵ	40%	39	39	38	38	37	37–36	36	34	32	29
	35%	34	34	34	33	33	32	31	30	28	26
	30%	29	29	29	28	28	27	27	25	24	22
	25%	24	24	24	24	23	23	22	21	20	18

Formula

Applied Wet Film Thickness (WFT)

WFT = Dry Film Thickness (DFT) x 100 Corrected Volume Solids (CVS)

Application wet film thickness (in microns)* to achieve required DFT for various volume solids coatings

*Theoretically calculated figures are NOT applicable for zinc coatings

Volume Solids %

		35	40	45	50	55	60	65	70	75	80	85	90	95
	25	71	63	56	50	46	42	39	36	33	31	29	28	26
	50	143	125	111	100	91	83	77	71	67	63	59	56	53
sus)	75	214	188	167	150	136	125	115	107	100	94	88	83	79
nicro	100	286	250	222	200	182	167	154	143	133	125	118	111	105
T (n	125	357	313	278	250	227	208	192	179	167	156	147	139	132
J CF	150	429	375	333	300	273	250	231	214	200	188	176	167	158
nire	175	500	438	389	350	318	292	269	250	233	219	206	194	184
Seq1	200	571	500	444	400	364	333	308	286	267	250	235	222	211
_	250	714	625	556	500	455	417	385	357	333	313	294	278	263
	300	857	750	667	600	546	500	462	429	400	375	353	333	316

PAINT APPLICATION INFORMATION

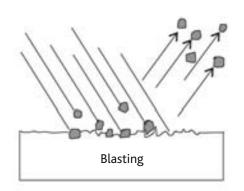
Formula

Theoretical Spreading Rate (SR)

 $SR = \frac{Corrected Volume Solids (CVS) \times 10}{Dry Film Thickness Volume (DFT)}$

Spreading rate (m 2 /ltr) achieving required DFT for various solids coatings

Volume	Solids 9	%											2.7.	IIII IIIICKI		(= : - /	
20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	
20	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.
25	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	34.0	36.0	38.0	40.
30	6.7	8.3	10.0	11.7	13.3	15.0	16.7	18.3	20.0	21.7	23.3	25.0	26.7	28.3	30.0	31.7	33.
<u>5</u> 0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0
50 75	2.7	3.3	4.0	4.7	5.3	6.0	6.7	7.3	8.0	8.7	9.3	10.0	10.7	11.3	12.0	12.7	13.
100	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
125	1.6	2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	5.6	6.0	6.4	6.8	7.2	7.6	8.0
150	1.3	1.7	2.0	2.3	2.7	3.0	3.3	3.7	4.0	4.3	4.7	5.0	5.3	5.7	6.0	6.3	6.7
175	1.1	1.4	1.7	2.0	2.3	2.6	2.9	3.1	3.4	3.7	4.0	4.3	4.6	4.9	5.1	5.4	5.7
200	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0	3.3	3.5	3.8	4.0	4.3	4.5	4.8	5.0
250	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0
300	0.7	0.8	1.0	1.2	1.3	1.5	1.7	1.8	2.0	2.2	2.3	2.5	2.7	2.8	3.0	3.2	3.3
400	0.5	0.6	0.8	0.9	1.0	1.1	1.3	1.4	1.5	1.6	1.8	1.9	2.0	2.1	2.3	2.4	2.5
500	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0


^{*}Theoretically calculated figures may vary from practical spreading rates by as much as 50% or more.

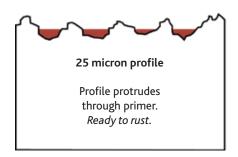
SURFACE PROFILE

Understanding surface profile

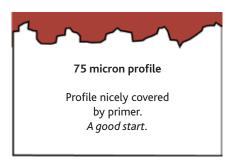
Unblasted "smooth" surface

Blasted "profiled" surface

In the blast cleaning process, grains of abrasive are propelled with great force and energy at the work surface. On impact, the grains 'dig' into and then rebound out and off the surface leaving a rugged, miniature 'mountain - and - valley' finish.


This surface roughness/etch/texture is the surface profile.

Surface profile is critical to coating performance by


- increasing the surface area
- providing a 'key/tooth/anchor pattern' for the coating to lock and adhere to

The difference between surface profile and class of blast

Surface profile is concerned with the 'shape' of the surface finish (and measuring the size of the 'shape' created) whereas Class of Blast is concerned with 'cleanliness' of the surface finish. (Putting it another way – Class of Blast is determining to what degree the rust, paint and other contaminants have been removed). Both the Profile and the Class of Blast are important features of the surface finish and need to be separately specified in preparing a blast-cleaned steel surface.

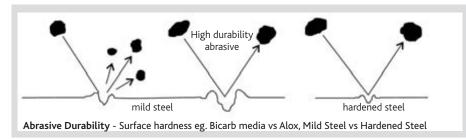
The pitfalls of surface profile

Excess Profile While an absence of profile can be detrimental to coating adhesion, it can be equally disastrous to have an excessive profile

height causing premature rusting and coating failure. In addition, more profile means using more paint to cover the surface!

Consider these cases...

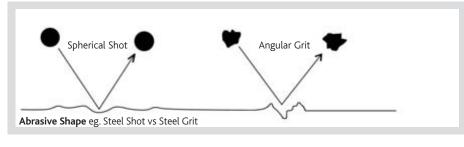
Rule of Thumb #1 Profile height should not exceed the primer coat DFT.


Rule of Thumb #2: Profile height should not exceed $\frac{1}{3}$ the total coating system DFT.

Embedment Embedment of abrasive particles in the surface is a threat posed by friable, irregular shape abrasives. The embedded particle

or fragment can stand out as a 'rogue' peak above the surrounding profile and protrude through the applied coating.

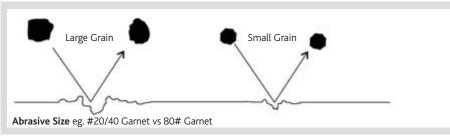
Factors which have an effect on surface profile

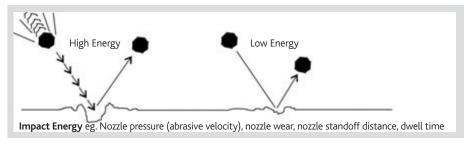


Variable Effect

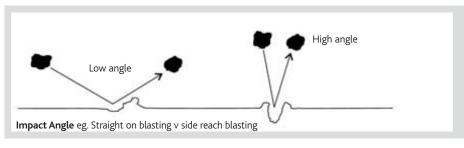
More durable abrasive = deeper profile

Less durable abrasive = shallower profile

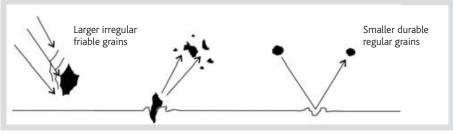

Hardened steel = shallower profile
Mild steel = deeper profile


Variable Effect

Round abrasive = dimpled, peened profile


Angular abrasive = sharper, rugged, profile

Variable Effect
Larger abrasive = deeper profile
Smaller abrasive = shallower profile


Variable Effect
Greater energy = deeper profile
Lesser abrasive = shallower profile

Variable Effect

Low angle = more scuffed profile

High angle = more peak 'n' valley
even profile

Variable Effect

Large friable = higher risk of embedment

Smaller durable regular grains = lower risk of embedment

SURFACE CLEANLINESS FACTORS

Subtle contaminants - Causes, Tests and Prevention

In addition to the obvious gross surface contaminants such as rust and old coatings, there are some subtle but serious contaminants which can cause major coating failure.

Salt (specifically chloride ions)

Possible causes

New steel

- · Contaminated abrasive
- · Contaminated water (rinsing or pressure washing)

Existing steel

 Both of the above, plus environmental industrial exposure, e.g. marine location or industrial process.

Tests

- · Many methods are available including:
- ChlorTest kits
- · Bresle patches
- SCAT kits
- · Conductivity meters
- Refer work specification and relevant AS/ISO standards.

Prevention

- · Use a traceable quality, low salt abrasive, e.g. GMA Garnet
- · Test abrasive for chloride content
- Test cleaning water for chloride content
- · Pretest existing structures for chloride presence prior to blasting
- Rinse with clean water and/or a soluble salts remover e.g. Chloride

Dust/Debris

Possible causes

- Poor quality abrasive causing excessive dust and debris, e.g. crushed glass
- · Failure to blow-off surface completely after blasting

Tests

- · Clean rag wipe test
- · Pressure sensitive tape method
- · Refer work specifications and relevant AS/ISO standard

Prevention

- · Use a low dust abrasive, e.g. GMA Garnet
- · Blow-off all surfaces after blasting

Oil/Grease (thin film)

Possible causes

New steel

- · Mill or warehousing or fabrication treatments
- Contaminated compressed air

Existing steel

- The above
- · Plus environmental exposure

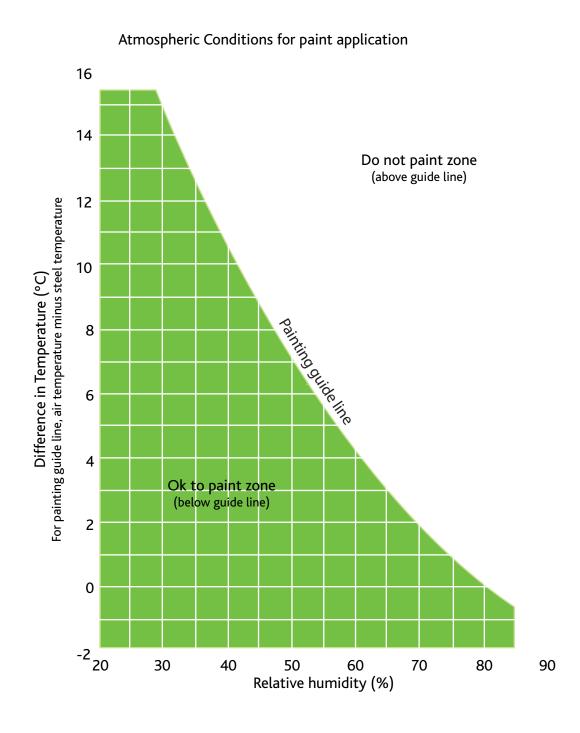
Tests

- Water Break Test
- UV Illumination Test
- Refer work specifications and appropriate AS/ISO standards.

Prevention

- Test and maintain compressed air quality
- Pretest and/or preclean work prior to blasting by degreasing and/or rinsing

DISCLAIMER: The above information is a guide only. It in no way purports nor represents to cover all factors, causes, tests or prevention of contaminants. Airblast Eurospray expressly disclaims any liability for the use or misuse of the above information.



CLIMATIC CONDITIONS FOR SAFE PAINTING

It is critical to the success of most coating systems, that the surface is completely free of moisture prior to and during paint application and curing.

Dewpoint

Condensation of water (dew) from the atmosphere on to the surface will occur, given the right conditions. For a given set of conditions, the temperature at which condensation will occur is called the Dewpoint. As long as the surface temperature is 3°C (or more) above the Dewpoint temperature, it is generally considered safe to paint as far as risk of condensation is concerned.

Instructions for use

1. Measure

- · air temperature
- surface temperature
- relative humidity

Use the same instrument for reading the air and surface temperature, and with an accuracy of ±0.5°C

2. Calculate

The temperature difference i.e. air temperature minus surface temperature

3. Plot and intersect on the chart

The temperature difference and the relative humidity

If the intersection point is BELOW the guide line

• indicates conditions are safe to paint.

ABOVE the guide line

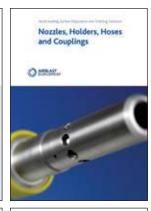
indicates UNSAFE conditions for painting

DISCLAIMER: The above information and chart do not represent or intend to be the approved nor standard method nor procedure for ensuring suitable climatic conditions for painting. Airblast Eurospray expressly disclaims any liability for the use or misuse of this information and/or procedures.

ABRASIVES

Material	Mesh size	Shape	Density l/ft³	Mohs	Fiability	Initial Cos	No. of cycles	Per use cost	Source	Typical applications
Sil. Sand	6–270	•	100	5.0–6.0	high	low	1	med	nat	Outdoor blast clea
Min. Slag	8-80	•	85–112	7.0–7.5	high	med	1–2	med	bp	Outdoor blast clea
Steel Grit	10–325	•	230	8.0	low	high	200+	med	mfg	Removing heavy so
Steel Shot	8–200	•	280	8.0		high	200+	low	mfg	Cleaning, peening
Al. Oxide	12–325	•	125	8.0-9.0+	med	high	6–8	med	mfg	Cleaning, finishing, deburring, etching
Glass bead	10-400	•	85–90	5.5	med	med	8–10	low	mfg	Cleaning, finishing
Plastic	12–80	•	45–60	3.0-4.0	low/med	high	8–10	med	mfg	Paint stripping, deflashing, cleaning
Wheat Starch	12–80	•	45	3.0	med	med	12–15	high	mfg	Paint, adhesive removal, composite
XL-Corn Hybrid Polymer	16–60	•	45	3.0	low	high	14–17	med	mfg	Composite paint removal adhesive deflash
Corn cob	8–40	•	35–45	2.0-4.5	med	low	4–5	low	bp	Removing paint fro delicate surfaces

CONVERSION FACTORS


Length Chousandth of inch (thou or mil)	x 25.4 = μm
nches (in)	x 25.4 = mm
feet (ft)	x 0.3048 = m
Area	
square inches (in²)	$x 645.16 = mm^2$
square feet (ft²)	$\times 0.0929 = m^2$
Volume	
cubic inches (cu in)	$x16.38716 = cm^3 \text{ or mL}$
cubic feet (cu ft)	$x 0.028317 = m^3$
cubic feet (cu ft)	x 28.31701 = L
US gallons (gal)	x 3.7854 = L
quart (qt)	x 0.9464 = L
fluid ounces (fl oz)	x 29.57 = mL
Speed – Velocity	
feet per minute (ft/min)	x 0.00508 = m/s
feet per second (ft/s)	x 0.03048 = m/s
Flow Rate	
cubic feet per minute (CFM)	x 0.47195 = L/s
cubic feet per minute (CFM)	x 0.028317 = m ³ /min
cubic feet per minute (CFM)	$x 1.69902 = m^3/hr$
US gallons per minute (gpm)	x 3.7854 = L/min
Weight – Mass	
pounds (lb)	x 0.4536 = kg
Bulk - Density	
pounds per cubic foot (lb/cuft)	$x 16.0185 = kg/m^3$
pounds per cubic foot (lb/cuft)	x 0.016019 = kg/L
Pressure	
pounds per square inch (psi)	x 6.8947 = kPa
pounds per square inch (psi)	x 0.0068947 = MPa
pounds per square inch (psi)	x 0.068947 = bar
Vacuum	
inches of mercury (in. Hg)	x 3.38638 = -kPa
inches of mercury (in. Hg)	x 13.596 = in. H ₂ O
Power	
horsepower (hp)	x 0.7457 = kW

Metric to Imperial	
Length	
microns (µm)	x 0.03937 = thou or mil
millimetres (mm)	x 0.03937 = in
metres (m)	x 3.28083 = ft
Area	
square millimetres (mm²)	$x \cdot 0.00155 = in^2$
square metres (m²)	$x 10.7639 = ft^2$
Volume	
cubic centimetres (cm³)	x 0.061023 = cu in
cubic metres (m³)	x 35.3145 = cu ft
litres (ltr)	x 0.035315 = cu ft
litres (ltr)	x 0.26417 = US gal
litres (ltr)	x 1.05668 = qt
millilitres (mL)	x 0.03381 = fl oz
Speed – Velocity	
metres per second (m/s)	x 196.85 = ft/min
metres per second (m/s)	x 3.28083 = ft/s
Flow Rate	
litres per second (ltr/s)	x 2.11887 = CFM
cubic metres per minute (m³/min)	x 35.3145 = CFM
cubic metres per hour (m³/hr)	x 0.58857 = CFM
litres per minute (ltr/min)	x 0.26417 = US gpm
Weight – Mass	
kilograms (kg)	x 2.2046 = lb
Bulk - Density	
kilograms per cubic metre (kg/m³)	0.062428 = lb/cuft
kilograms per litre (kg/ltr)	x 62.4277 = lb/cuft
Pressure	
kilopascals (kPa)	x 0.145 = psi
megapascals (MPa)	x 145.04 = psi
bar (bar)	x 14.504 = psi
Vacuum	
kilopascals vacuum (-kPa)	x 0.2953 = in. Hg
inches of water (in. H ₂ O)	x 0.07355 = In. Hg
Power	
kilowatts (kW)	x 1.341 = hp
Temperature	
degrees Celsius (°C)	x 1.8, then +32 = °F

WORLD LEADING SURFACE PREPARATION & FINISHING SOLUTIONS

Blast Rooms

Abrasives

Airblast Eurospray account

us today.

All products sold are subject to our standard Terms and Conditions, which are available on request. E&OE. Price does not include delivery

Products and services

Abrasive blast cabinets

Portable blast systems

Blast accessories

Design and build

Lighting systems

Compressors

Reconditioning

Dust recovery equipment

Pressure testing

Paint spray booths

Training

Coating systems

Equipment

Pressing equipment

President

Pressure testing

Fraining

Coating systems

Sample processing

Equipment hire

Coating accessories

Contact us

For further information on how our products and services could benefit your company, please contact us by any of the means below.

Airblast Ltd
Unit 26, King Street Industrial Est
Langtoft, Peterborough
Cambridgeshire PE6 9NF

Tel 01778 560650 Fax 01778 560724 sales@airblast.co.uk www.airblast.co.uk